Applied Cell Biology

Applied Cell Biology

Publisher Home

Long Term Conservation of DNA at Ambient Temperature. Implications for DNA Data Storage

Delphine Coudy1, Marthe Colotte2, Aurélie Luis1, Sophie Tuffet1,2 and Jacques Bonnet1,3*

1Laboratoire de Recherche et développement, Imagene Company, Pessac, France

2Imagene, plateforme de production, Genopole, Evry, France

3Université de Bordeaux, Institut Bergonié, INSERM, Bordeaux, France


DNA conservation is central to many applications. This leads to an ever-increasing number of samples which are more and more difficult and costly to store or transport. A way to alleviate this problem is to develop procedures for storing samples at room temperature while maintaining their stability. A variety of commercial systems have been proposed but they fail to completely protect DNA from deleterious factors, mainly water. On the other side, Imagene company has developed a procedure for long-term conservation of biospecimen at room temperature based on the confinement of the samples under an anhydrous and anoxic atmosphere maintained inside hermetic capsules. The procedure has been validated by us and others for purified RNA, and DNA in buffy coat or white blood cells lysates, but a precise determination of purified DNA stability is still lacking.

We used the Arrhenius law to determine the DNA degradation rate at room temperature. We found that extrapolation to 25°C gave a degradation rate constant equivalent to about 1 cut/century/100 000 nucleotides, a stability several orders of magnitude larger than the current commercialized processes. Such a stability is fundamental for many applications such as the preservation of very large DNA molecules (particularly interesting in the context of genome sequencing) or oligonucleotides for DNA data storage. Capsules are also well suited for this latter application because of their high capacity. One can calculate that the 64 zettabytes of data produced in 2020 could be stored, standalone, for centuries, in about 20 kg of capsules.

Powered By

Subscribe to our newsletter and stay up to date with the latest news and deals!

Connect via