

ISSN: 2320-1991 Online ISSN: 2320-1983 Print

Volume 10 Issue 3

DOI: https://dx.doi.org/10.53043/2320-1991.acb90030

Research Article

Appl Cell Biol, 10(3), 2022 [95-104]

Species Richness, Morphological Features and Inventory of Wild Macrofungi found in Akwa Ibom State, Nigeria

Okon OG1*, Okon JE1, Antia UE2, Sam SM1, Udoh LI1, Usen EN1 and Ibanga IA2

¹Department of Botany, Akwa Ibom State University, Ikot Akpaden, Nigeria ²Department of Microbiology, Akwa Ibom State University, Ikot Akpaden, Nigeria

*Corresponding author: Okon OG, Department of Botany, Akwa Ibom State University, Ikot Akpaden, Nigeria

ABSTRACT Keywords

The macrofungi diversity in Akwa Ibom State, Nigeria has been inadequately sampled and never documented; this situation makes the status of macrofungi in the State unclear. It is from this reason that this study was necessitated. A total of 60 species of wild macrofungi belonging to 25 families we documented during the period of this study (April to July 2021). Agaricaceae family recorded the highest number of species (12), followed by Polyporaceae (10), Psathyrellaceae (5), Marasmiaceae (4), Amanitaceae (3), Gomphaceae, Lycophyllaceae, Physalacriaceae, Hymenochaetaceae, Gamodermataceae and Strophariaceae recorded 2 species each. Pluteaceae, Stereaceae, Bondarzewiaceae, Schizophyllaceae, Entolomaceae, Cortinariaceae, Pleurotaceae, Dacrymycetaceae, Auriculariaceae, Tricholomataceae, Hygrophoraceae, Hydnangiaceae, Tubiferaceae and Lycoperdaceae recorded 1 species respectively. Out of the 60 macrofungi recorded, 36 species (60.00%) were nonedible, 13 species (21.67 %) were edible, 2 (3.33%) were choice edible and 2 (3.33%) edible but not recommended respectively. 1 species (1.67%) each were poisonous, psychoactive, edible while young, not recommended, non-poisonous but leathery, edible but shows allergic reactions in some individuals and unknown edibility status. Analysis on the growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%) on decaying organic matter. The list and inventory provided by this study will give baseline information that will be needed in the assessment of changes that may occur in wild macrofungi diversity in Akwa Ibom State, Nigeria. The rich diversity of wild occurring macrofungi in Akwa Ibom State offers huge economic life for the local inhabitants in terms of nutriton, health and medicine as well as ecosystem stability at large. Inclusion of macrofungi biodiversity conservation in Akwa Ibom State and Nigerian forest management policies will be an appropriate step towards conservation of these wild macrofungi.

Agaricaceae

Macrofungi Marasmiaceae Mushroom Polyporaceae Psathyrellaceae

INTRODUCTION

Fungi are regarded amongst the most diverse group of organism on earth, they do not possess chlorophyll and meets their nutrients requirements by absorption. Reproduction is via spores [1] and they include Basidiomycota and Ascomycota. Macrofungi which are sometimes referred to as mushrooms

possess a very distinguishing fruiting bodies which are usually produced above ground (soil) (Chang and Miles 1992), dead woods, occasionally found on living trees as well as other food sources. Macrofungi are typically large enough to be handpicked and seen with the naked eyes [2].

The presence of fungal species is of utmost importance to the ecosystem; fungal communities play vitals roles [3] as decomposers by degrading ecosystem organic which is essential for nutrient cycling [4]. Fungal species such as the mycorrhizal fungi form symbiotic associations with about 80% of higher plants aiding in the acquisition of nutrients and water [5]. [6] reported the use of fungal species as bioindicators for the assessment of forests health and quality. Aside ecological and ecosystem functions, fungal species have been of immense benefits to mankind, they are sold and purchased in the markets globally [7] providing great economic benefit to the rural communities as well as culinary benefits [8].

Macrofungi are widely distributed globally and are considered to be one of the earliest forms of fungi known to man [9]. Providing information with regards to macrofungal diversity contributes essentially to global diversity, community diversity in particular which is essential in fungal diversity [9]. It has been reported that only about 6.7% out of the 1.5 million fungal species assessed globally have been described mostly in the tropic, whereas the tropical regions with the seemingly highest rate of fungal diversity have not been fully evaluated [10].

Akwa Ibom State, Nigeria has a rich fungal diversity which has remained poorly exploited. With the rapid development going on in the State, certain developmental accompanying activities like deforestation, crude oil exploration and exploitation, environmental pollution and stresses all leads to environmental degradation which is a key factor in the loss of biodiversity globally which in most cases are usually irreversible. According to literature search, the macrofungi diversity in Akwa Ibom State, Nigeria has been inadequately sampled and never documented; this situation makes the status of macrofungi in the Akwa Ibom State, Nigeria unclear. It is from the reason stated above that this study was necessitated. It is therefore pertinent to create an inventory on the existing wild macrofungi as well as document their morphological characteristic. This research is the first attempt to provide baseline information about macrofungi assemblage and diversity in Akwa Ibom State, Nigeria.

MATERIALS & METHODS

Study Area

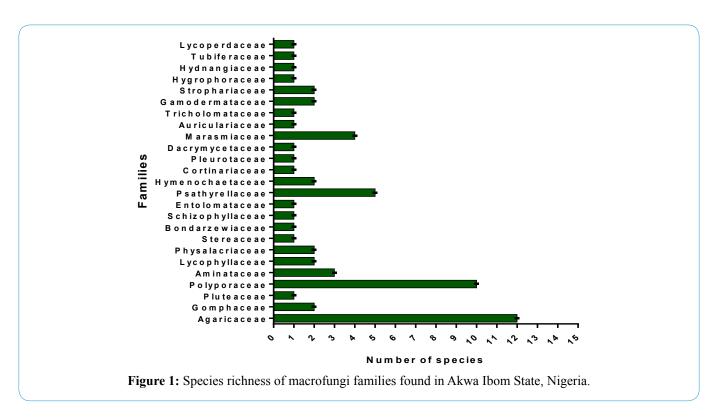
This study was carried out in Mkpat Enin, Etinan, Onna and Ikot Ekpene Local Government Areas of Akwa Ibom State, Nigeria. Akwa Ibom State is located in the Southern region of Nigeria, lying between latitudes 4°32'N and 5°33'N, and longitudes 7°25'E and 8°25'E. Etinan Local Government

Area (Latitude 4.51°N and Longitude 7.50°E), Akwa Ibom State, Nigeria, with an annual rainfall of about 4000 mm and mean temperature variation of 26 – 36°C. Mkpat Enin Local Government area is situated within geographical coordinates of Latitude 4°44′5″N, Longitude 7°44′56″E. Onna lies between the coordinates 4°39′0′N and of 7°52′0′E. Ikot Ekpene lies between the coordinates 5°11′N and of 7°43′E.

For Mkpat Enin; Ekim Town, Ikot Akpaden, Ikot Enin, Ikot Aba, Ikot Obiondoho, Ndon Obodom, Ikot Isehe and Ikot Ukwa were sampled. For Onna; Mkpok, Ndon Eyo, Nkan, Ikot Ebiere and Okom were samped. For Etinan; Mbioto 1, Ikot Ekan, Afaha Effiat, and Ikot Nseyen were sampled. For Ikot Ekpene; Utu Ikpe, Utu Edem Usung and Abiakpo Edem Idim were sampled.

Identification of Macrofungi

Accessibility of the study area was a major criteria in the selection of the sampling sites. Repeated sampling was carried out following the laid down field protocol outlined by [11]. The survey and inventory studies took place from April to July 2021 using transects of $50 \times 20 \text{m}$ in triplicate plots. İn-situ photographs of the wild macrofungi species were taken as well as the morphological features measurement. İdentification of the macrofungi species was done by a mycologist using taxonomic keys and descriptions described by [12].


RESULTS

A total of 60 species of wild macrofungi belonging to 25 families we documented during the period of this study. Agaricaceae family recorded the highest number of species (12), followed by Polyporaceae (10), Psathyrellaceae (5), Marasmiaceae (4), Amanitaceae (3), Gomphaceae, Lycophyllaceae, Physalacriaceae, Hymenochaetaceae, Gamodermataceae and Strophariaceae recorded 2 species each. Pluteaceae, Stereaceae, Bondarzewiaceae, Schizophyllaceae, Entolomaceae, Cortinariaceae, Pleurotaceae, Dacrymycetaceae, Auriculariaceae, Tricholomataceae, Hygrophoraceae, Hydnangiaceae, Tubiferaceae and Lycoperdaceae recorded 1 species respectively as shown in Table 1 and Figure 1.

Results obtained from the edibility assessment of the wild macrofungi found in Akwa Ibom State, Nigeria revealed that out of the 60 macrofungi recorded, 36 species (60.00%) were non-edible, 13 species (21.67%) were edible, 2 (3.33%) were choice edible and edible but not recommended respectively. 1 species (1.67%) each were poisonous, psychoactive, edible while young, not recommended, non-poisonous but leathery, edible but shows allergic reactions in some individuals and unknown edibility status as shown in Figure 2.

S/N	Scientific Name	Family	Comon Name	Local Name	Colour/ Appearance	Edibility Status	
1	Agaricus pocilator	Agaricaceae	Agrocybe	Tinaba	Milky	Ediblic Status	
2	Agaricus semotus	Agaricaceae	Button mushroom		Brown	Edible	
3			Horse Muchroom	Unknown	White		
	Agaricus arvensis	Agaricaceae		Unknown		Edible	
4	Amanita caesarae	Aminataceae	Caesar mushroom Panther	-	Milky/brown	Non-edible	
5	Amanita pantherina	Aminataceae	muchroom	Unknown	Brown	Non edible	
6	Aminata vaginata	Aminataceae	The grissette	Udip iton	Gray to grayish-brown	Edible but not recommended	
7	Armillaria ostoyae	Physalacriaceae	Honey fungi	Unknown	Brown	Non edible	
8	Armillaria mellea	Physalacriaceae	Honey mushroom or stump mushroom	Unknown	honey coloured, yellowish	Choice edible but can cause allergic reaction	
9	Bondarzewia berkeleyi	Bondarzewiaceae	Berkeley's polypore	Unknown	Pale-grey	Edible	
10	Calvatia gigantea	Agaricaceae	Giant puffball	Unknown	Brown	Edible	
11	Calvatia cyathiformis	Agaricaceae	Purple-spored puffball, puffball cap.	Nsenunen isong	Purple or brownish	Edible while young	
12	Chlorophyllum molybdites	Agaricaceae	False parasol	Udip eto	Milky	Poisonous	
13	Clitopilus prunulus	Entolomataceae	Dead Dough Clitopilus	Nkokobingo	Grey-white	Edible	
14	Coltricia perennis	Hymenochaetaceae	Tiger's eye	Unknown	Grey	Non edible	
15	Coprinopsis lagopus	Psathyrellaceae	Hare's foot inkcap	Udip Ekpeyop	Pale to very dark brown, slivery grey veil	Unknown	
16	Coprinus lagopus	Psathyrellaceae	Harefoot mushroom	Akpoktoi	Ash	Non-edible	
17	Coprinus plicatilis	Psathyrellaceae	Umbrella Mushroom	Akpoktoi	Ash	Non-edible	
18	Cortinarius malicorius	Cortinariaceae	Yellow malicorius	Unknown	Bright-yellow	Non edible	
19	Dacryopinax spathularia	Dacrymycetacea e	Sweet osmanthus	Udip ekpo	Yellow	Non-edible	
20	Exidia recisa	Auriculariaceae	Willow brain or amber jelly roll	Utong ekpu	Honey Brown	Edible	
21	Ganoderma lingzhi	Gamodermataceae	Reishi muchroom	Unknown	White	Non edible	
22	Ganoderma resinaceum	Ganodermataceae	Bracket fungus	Awod-oyop	Brown with whitish edge kining	Non edible, medicinal	
23	Gerronema strombodes	Marasmiaceae	Golden gilled gerronema	Unknown	Milky	Non edible	
24	Gymnopilus luteofolius	Strophariaceae	Yellow-gilled gymnopilus	Udip Ekpo	Reddish, purple to yellow caps	Psychoactive	
25	Hygrocybe squamulosa	Hygrophoraceae	Waxy cap	Unknown	Brightly coloured in shades of red, orange or yellow	Edible but not recommended	
26	Laccaria laccata	Hydnangiaceae	Laccaria Muchroom	Unknown	Reddish-brown	Edible	
27	Laetiporus sulphureus	Polyporaceae	Chicken mushroom	Nsasam	Brown	Non edible	
28	Leiotrametes lactinea	Polyporaceae	Poroid white rot fungi	Unknown	Whitish, milky	Non edible	

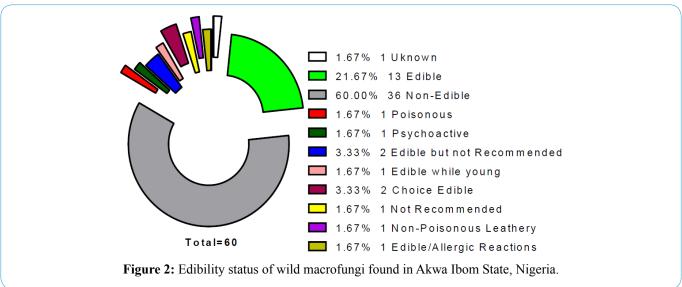
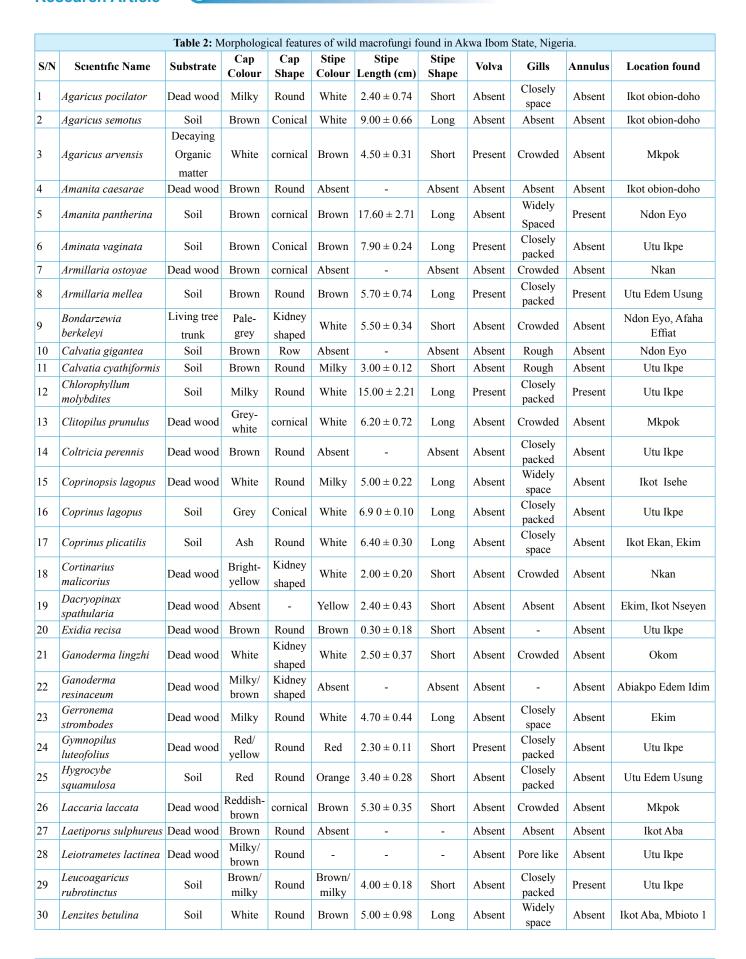
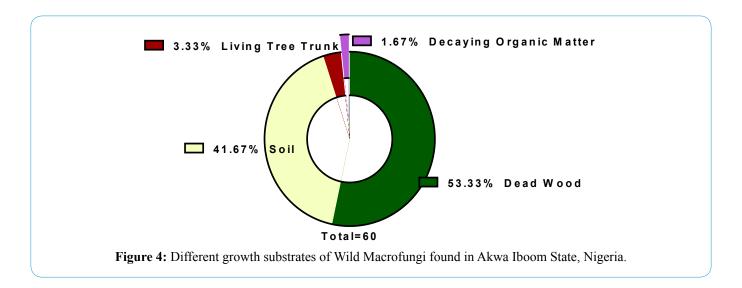



Table 2 shows the morphological features of wild macrofungi found in Akwa Ibom State, Nigeria; these include; cap colour, cap shape, stipe colour, stipe length, volva, gills and annulus as well as growth substrate and location found.

Analysis on the growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%) on decaying organic matter (Figure 4).

DISCUSSION


Results obtained in this research is in line with the work of [13] who also recorded abundance of species from the family Agaricaceae, Psathyrellaceae, Polyporaceae, Lycophyllaceae. The Agaricaceae family from this study presented the most abundant species. The family Agaricaceae are conspicuous macrofungi, thus, it would not be surprising to find a higher occurrence during sampling. Similar findings was reported by [14], they recorded abundance of species from the families Auriculaceae, Formitopsidaceae, Polyporaceae, Russulaceae,

31	Lentinus triginus	Dead wood	Milky	Round	Milky	1.00 ± 0.03	Short	Present	Closely packed	Absent	Abiakpo Edem Idim
32	Lycogala epidendrum	Dead wood	Brown	Round	_	-	-	-	packed -	Absent	Abiakpo Edem Idim
33	Lycoperdon nigrescens	Soil	Brown	Round	Absent	-	Absent	Absent	Rough	Absent	Ndon Eyo
34	Lycoperdon utriforme	Soil	Brown	Conical	Milky	4.50 ± 0.41	Short	Absent	Absent	Absent	Ikot Aba
35	Leratiomyces percevalii	Soil	Milky	Round	Milky	2.50 ± 0.17	Short	Present	Closely packed	Absent	Utu Ikpe
36	Macrolepiota xanthopus	Soil	Brown	Conical	Brown	4.20 ± 0.19	Short	Absent	Absent	Absent	Ndon Obodom
37	Macrolepiota albuminosa	Soil	Brown	Round	Absent	-	-	Absent	Absent	Absent	Ndon Obodom
38	Macrolepiota rhacodes	Soil	Milky	Round	Milky	13.20 ± 2.13	Long	Present	Widely space	Present	Ndon Obodom
39	Macrolepiota procera	Soil	Milky/ brown	Conical	Milky	7.60 ± 1.17	Long	Present	Rough	Absent	Utu Edem Usung, Mbioto 1
40	Marasmiellus candedus	Dead wood	Milky	Round	Absent	-	-	Absent	Widely space	Absent	Ikot Oyoro
41	Marasmius rotula	Soil	Milky	Round	Brown	7.90 ± 0.48	Long	Absent	Widely spaced	Absent	Utu Edem Usung
42	Mycena pura	Soil	Purple	cornical	White	14.30 ± 3.15	Long	Absent	Widely Spaced	Absent	Ndon Eyo
43	Ossicaulis lignatilis	Dead wood	White	Round	Milky	0.50 ± 0.15	Short	Absent	Closely packed	Absent	Utu Edem Usung
44	Parasola plicatilis	Soil	Milky/ brown	Round	White	9.30 ± 1.48	Long	Absent	Closely packed	Absent	Utu Ikpe
45	Phellinus populicola	Living tree trunk	Brown	Kidney Shaped	Absent	-	Absent	Absent	Crowded	Absent	Nkan
46	Pleurocybella porrigens	Dead wood	Milky	Round	Milky	0.20 ± 0.01	Short	Absent	Closely packed	Absent	Utu Ikpe
47	Pleurotus ostreatus	Dead wood	Brown	Round	Brown	4.20 ± 0.14	Short	Absent	Closely packed	Absent	Utu Ikpe
48	Pleuteus cervinus	Soil	Grey/ brown	Round	Milky	6.30 ± 0.41	Long	Present	Closely packed	Absent	Abiakpo Edem Idim
49	Polyporus varius	Dead wood	Brown	Round	Absent	-	Absent	Absent	Closely packed	Absent	Ikot Oyoro
50	Psathyrella candolleana	Soil	Milky	Conical	Milky	4.60 ± 0.22	Long	Present	Weblike	Absent	Utu Edem Usung
51	Ramaria stricta	Dead wood	Ash	Conical	Ash	2.30 ± 0.14	Short	Absent	Absent	Absent	Ukam, Afaha Effiat
52	Schizophyllum commune	Dead wood	Grey	-	Grey	0.30 ± 0.04	Short	Absent	Closely packed	Absent	Utu Edem Usung
53	Stereum hirsutum	Dead wood	Milky/ yellow	-	-	-	-	Absent	-	Absent	Utu Ikpe
54	Termitomyces striatus	Soil	Grey	Round	Milky	4.30 ± 0.94	Long	Absent	Closely packed	Absent	Mbioto 1, Ikot Ekan
55	Trametes pubescens	Dead wood	cream- coloured	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Nkan
56	Trametes gibbosa	Dead wood	Yellow	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
57	Trametes versicolor	Dead wood	Brown	Round	Absent	-	-	Absent	Closely spaced	Absent	Ikot Enin
58	Trametes suaveolens	Dead wood	Cream- coloured	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
59	Trametes trogi	Dead wood	Yellow	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
60	Turbinellus floccosus	Dead wood	Yellow	Row	Brown	7.50 ± 0.17	Long	Absent	Rough	Absent	Mkpok

Agaricaceae, Corpinaceae, Tricholomataceae, Lyophyllaceae, Pleurotaceae and Russulaceae in their research investigation to catalogue and identify some wild edible macro-fungi in Nigeria. [15] on his survey of Zuru Local Government area of Kebbi State, Nigeria collected twelve wild mushroom species which include; Agaricus semotus, Panus fulvus, Fomes lignosus, Amanita caesarea, Chlorophyllum molybdite, Lactarius deliciosus, Pleurotus ostreatus, Ganoderma lucidum, Tramates elegans, Lenzites betulina, Lepiota procera, and Trametes versicolor were documented for the first time in

study area (Zuru) most of which were also recorded in this study. This supports previous findings, that diversity of Nigeria mycoflora is underestimated [16].

From this study growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%). This is in line with the work of Keta et al. (2019) who also reported that mushroom growth environment observed during fruiting bodies collection, 42.4% of the samples were collected from soil and dead wood (27.8%). This agrees with the previous reports by [17] and [18] which stated that, dead wood and soil debris are most common and favourable mushroom substrates for the growth of mushroom species as a result of higher nutrient content that are easily degradable and reabsorb by these mushroom mycelia growing on it.

CONCLUSIONS

The list and inventory provided by this study will give baseline information that will be needed in the assessment of changes that may occur in wild macrofungi diversity in Akwa Ibom State, Nigeria. The rich diversity of wild occurring macrofungi in Akwa Ibom State offers huge economic life for the local inhabitants in terms of nutrition, health and medicine and ecosystem stability at large. However, the usefulness of these macrofungi has resulted in its overexploitation which needs to be curbed. Thus, conservation of these macrofungi can be done through cultivation, creation and protection of the mushroom habitats and forest reserves where these mushrooms are found. Also, inclusion of macrofungi biodiversity conservation in Akwa Ibom State and Nigerian forest management policies will be appropriate.

ACKNOWLEDGEMENTS

I wish to thank Ukpong Bella, Umoren Peter and Umoren Patrick for their aid and contributions towards the success of this work.

REFERENCES

- Taylor DJ, Green NPO, Stout GW, Soper, R (1998). Text Book of Biological Science, University press, Cambridge, UK, Pages 1–984.
- Chang ST, Miles PG (1992). Mushroom biology-A new decipline. *Mycologist*. 6:64-65.
- Song J, Chen L, Chen F, Ye J (2019). Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. *Ecol. Evol. 9*:8900–8910.
- 4. Chen J, Xu H, He D, Li Y, Luo T, et al. (2019). Historical logging alters soil fungal community composition and network in a tropical rainforest. *For. Ecol. Manage.* 433:228–239.
- 5. Tedersoo L, Bahram M, Zobel M (2020). How mycorrhizal associations drive plant population and community biology. *Science* (80-.) 367.
- 6. Egli S (2011). Mycorrhizal mushroom diversity and productivity An indicator of forest health? *Ann. For. Sci.* 68:81–88.
- Oria-de-Rueda JA, Hern'andez-Rodríguez M, Martín-Pinto P, Pando V, Olaizola J (2010) Could artificial reforestations provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean areas? For. Ecol. Manage. 260:171–180.
- 8. Pettenella D, Secco L, Maso D (2007). NWFP&S marketing: lessons learned and new development paths from case studies in some European Countries. *Small-Scale For.* 6:373–390.

- Okhuoya J, Akpaja E, Osemwegie O, Oghenekaro A, Ihayere C (2010). Nigerian mushrooms: underutilized non-wood forest resources. *Journal of Applied Sciences and Environmental Management*, 14(1):43–54.
- 10. Hawksworth DL (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. *Mycological Research*, 105(12):1422–1432.
- 11. Krishnappa M, Swapna S, Syed A (2014). Diversity of macrofungi communities in chikmagalur district of Western Ghats, India, in *Proceeding of the 8th International Conference on Mushroom Biology and Mushroom Products (ICM BMP8)*, pp.71–82.
- Douanla-Meli C (2007). "Fungi of Cameroon, Ecological Diversity; Taxonomy of Non-gilled Hymenomycetes, Mbalmayo Forest Reserve, *Bibliotheca Mycologica*," pp 410.
- Alem D, Dejene T, Oria-de-Rueda JA, Martín-Pinto P (2021). Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. Forest Ecology and Management, 496:119391.

- 14. Nwordu ME, Isu RN, Ogbadu GH (2013). Catalogue and identification of some wild edible macro-fungi in Nigeria. *Online International Journal of Food Science*, 2:1-15.
- 15. Keta JN, Suberu HA, Shehu K, Mubarak A, Mohamed NK, et al. (2019). Diversity of Wild Macro Fungi in Kebbi State: A Baseline Report. *Equity Journal of Science and Technology*, 6(1): 78 -86.
- 16. Musieba F, Okoth S, Mibey RK (2011). First Record of Occurrence of *Pleurotus citrinopileatus* Singer on new hosts in Kenya. *Agric Biol J North Am*, 2(9):1304-1309.
- 17. Ayodele SM, Akpaja EO, Adamu, Y (2011). Some Edible Medicinal Mushrooms of Igala Land in Nigeria, Their Sociocultural and Ethnomycological Uses. *International Journal of Sciences Nature*, 2(3): 473-476.
- Tibuhwa DD (2011). Substrate specificity and phenology of macrofungi community at the University of Dar es Salaam main campus, Tanzania. *Journal of Applied Bioscience*, 46:3173-3184.